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Purpose. Probabilistic methods are insufficient for dealing with the vagueness inherent in human

judgment of minimal data available during early drug development. We sought to use fuzzy set theory as

a basis for quantifying and propagating vague judgment in a physiologically based pharmacokinetic

(PBPK) model for diazepam disposition.

Materials and Methods. First, using diazepam distribution data in rat tissues and fuzzy regression, we

estimated fuzzy rat tissue-to-plasma partition coefficients (Kp_s). We scaled the coefficients prior to

human PBPK modeling. Next, we constructed the fuzzy set of hepatic intrinsic clearance (CLint) by

integrating CLint values measured in vitro from human hepatocytes. Finally, we used these parameters,

and other physiological and biochemical information, to predict human diazepam disposition. We

compared the simulated plasma kinetics with published concentration-time profiles.

Results. We successfully identified rat Kp_s by fuzzy regression. The predicted rat tissue concentration-

time contours enveloped the animal tissue distribution data. For the human PBPK model, the mean in

vivo plasma concentrations were contained in the simulated concentration-time envelopes.

Conclusions. We present a novel computational approach for handling information paucity in PBPK

models using fuzzy arithmetic. Our methodology can model the vagueness associated with human

perception and interpretation of minimal drug discovery data.

KEY WORDS: diazepam; fuzzy arithmetic; fuzzy regression; fuzzy sets; physiologically based
pharmacokinetic model.

INTRODUCTION

Physiologically based pharmacokinetic (PBPK) models
can predict the pharmacokinetics of promising analogues in
drug development (1,2). Their implementation, however, is
hampered by the incompleteness and scarcity of data suitable
for estimating the numerous model parameters. With a
limited data base upon which to make predictive assessments,
a degree of human judgment is needed. This is accompanied
by the imprecision and vagueness that characterizes human
reasoning and, consequently, a distinct form of uncertainty
can be introduced, rooted not in randomness, but in
vagueness. It is in such circumstances that a quantitative
technique that incorporates the concept of vagueness, or
fuzziness, may provide a useful perspective.

In uncertainty analysis of PBPK models to date, the
vagueness inherent in the data modeler_s perception and
judgment of scant information is usually treated using

probabilistic methods, such as Bayesian probability theory
(3,4). The Bayesian method requires the data modeler to
provide the probability that a parameter value has a particular
likelihood of occurrence, i.e., a prior parameter distribution. As
such, this procedure is anchored by available prior knowledge
about what values the parameter can assume. This approach,
however, can have serious limitations. First of all, if little or no
information about the parameter distribution is known, a
broad, uninformative prior distribution may be assigned.
However, a vague prior may result in the problematic com-
putation of the posterior distribution by, e.g., Markov Chain
Monte Carlo estimation. More importantly, when human
judgment is involved, it may be unnatural to force the data
modeler to choose whether the parameter assumes a certain
range of values or not, and state the relevant probabilities
within the range. For instance, if the data modeler believes that
Bthe drug concentration is Fabout_ 5 ng/ml^, it may not make
sense for him or her to attach a probability measure to this
fuzzy observation. All in all, entering subjective judgments into
PBPK model analysis as probabilities—conditional or other-
wise—may be complicated or restrictive and therefore, a more
heuristic approach may offer an appealing mathematical tool
for handling such vague descriptors.

Fuzzy set theory was introduced more than 40 years ago
as the foundation for a formalized logic that reflects the
vagueness inherent in human reasoning (5). The fuzzy set
theoretic approach has a distinct conceptual foundation from
the Bayesian approach. Rather than demand that the data
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modeler quantifies the prior probabilities of parameter
values, perhaps based on limited measurements related to
frequency of occurrence, the fuzzy approach bypasses the
quantification of probabilities and models uncertainty itself
[(5–7) include extensive treatments of fuzzy set theory versus
probability theory/Bayesian statistics from both technical and
philosophical perspectives]. This is done through the concept
of fuzzy sets, where the degree to which a parameter value
belongs to a fuzzy set, i.e., its membership grade, inherently
incorporates the uncertainty associated with the value (8).
For humans, it is generally much easier to estimate grades of
membership or degrees of possibility (e.g., what is the degree
to which the concentration of drug A is high?; what is the
degree to which drug B is effective?) rather than probabilities
(9). Therefore, it can be argued that the fuzzy theoretic
method is a natural one to represent and implement the
vagueness of a data modeler_s judgment. This makes fuzzy
approaches particularly suitable for data analysis in drug
discovery and early development, where human reasoning
needs to be frequently employed to interpret incomplete and
scarce drug candidates_ data. Hence, these methods are
increasingly adopted in pharmaceutical risk assessments and
pharmacotherapy studies (9–12).

Using a rat PBPK model, Gueorguieva et al. (10)
employed fuzzy sets to describe uncertain tissue-to-plasma
partition coefficients (Kp_s) and intrinsic hepatic clearance
(CLint, in vivo) in order to analyze the propagation of
parametric vagueness in diazepam pharmacokinetics follow-
ing intravenous administration. In that study, the authors
derived the fuzzy sets of rat Kp_s from their corresponding
probability density functions (PDF_s) using the probability-
possibility transformation technique (13). These PDF_s were
in turn estimated by naı̈ve pooled data analysis using
ordinary least-squares (OLS) regression. However, the
PDF-to-fuzzy set transformation approach may suffer from
several drawbacks. First, statistical regression analysis may
not yield valid estimates when the sample size is small.
Furthermore, the availability of four or fewer measured
diazepam concentrations per time t per tissue in the data set
of (10) may make it more intuitive for the data modeler to
state that Bthe diazepam concentration at t = x min is Fmore
or less_ y ng/ml^ (where y is an Faverage_ measure of the
available concentrations), instead of Bthe diazepam concen-
tration at t = x min follows a normal distribution with mean
equal to y ng/ml and standard deviation equal to z ng/ml^ (it
can be expected that the estimate of the standard deviation in
particular would be heavily affected by the small sample
size). Probability theory presently does not offer specific
techniques for dealing with fuzzy quantifiers like Fmore or
less_ and Fabout_. Second, the conversion of a PDF into its
fuzzy set counterpart is dependent on the heuristic selection
of a confidence level – which corresponds to the data
modeler_s preferred probability level of value(s) that will be
transformed into the Fmost likely_ one(s) (i.e., with a
membership grade of one) in the resultant fuzzy set (13).
Moreover, the PDF may not be successfully transformed into
a fuzzy set if its variance is comparatively large (10). Lastly,
the practice of converting a PDF to a fuzzy set has been
discouraged, since in doing this objective probabilistic data—
if available—is replaced by fuzzy values, resulting in the loss
of very valuable information (14). To address these concerns,

in this paper, we employed a fuzzy set-based technique called
fuzzy least-squares (FLS) regression to directly estimate the
rat Kp_s as fuzzy sets.

The objective of this study was to suggest an alternative
way of handling minimal information in (10) by using fuzzy
set theoretic approaches to quantify uncertainty due to
vagueness attached to human perception and judgment. In
doing so, we refrained from analyzing the data using both
probabilistic and fuzzy set approaches, which quantify data
randomness and data vagueness, respectively, and therefore
have different domains of applicability. We illustrated our
modeling framework by quantifying the pharmacokinetics of
diazepam in rat and in human, since its in vivo kinetics in
various animal species and human have been reasonably well
studied, providing a body of useful information with regard
to key absorption, distribution, metabolism and elimination
processes (15–17).

MATERIALS AND METHODS

Mathematical Background

Fuzzy Sets and Fuzzy Arithmetic

A fuzzy set is defined on an interval of possible values,
and a membership function is used to define weights between
0 and 1 for all values within the interval (support). The
membership function can be considered as a possibility
distribution for values within the interval limits. Interval
values with higher membership grades are Fmore likely_ than
those with lower membership grades. The simplest of all
fuzzy sets are those with a triangular membership function
(when the exact distribution is not known, it may be
impractical or unwarranted to assign a more complex-shaped
function); this is most often used, and will also be employed
in this study. A generic way of representing a fuzzy set is by
expressing it as a series of intervals at different grades of
membership called a-cuts. It follows that any mathematical
operation involving such fuzzy sets can be implemented using
the a-cut strategy. Using the intervals at a specific a level
(0 < a e 1), an interval analysis is performed. The result is an
output interval that includes all possible combinations of
input interval values, and the membership grade of any
combination is the maximum membership grade of any of the
individual input. Finally, the fuzzy output is assembled from
the resulting output a-cuts. For a detailed exposition of fuzzy
sets and fuzzy arithmetic, the reader is referred to (8,10,18).

FLS Regression

Fuzzy regression operates on fuzzy sets. A fuzzy
regression model is characterized by coefficients that are
fuzzy sets and, as such, the output values predicted by the
model are also fuzzy sets. In our PBPK modeling framework,
each regression equation of the well-stirred single tissue-
based model (19) was identified using nonfuzzy input (t) and
fuzzy output (tissue concentration eCC ) variables, and the
regression coefficient, e.g., tissue-to-plasma partition coeffi-
cient eKKp , was estimated as a fuzzy set. In this paper, a letter
with F~_ denotes a fuzzy set. Consequently, values of the
predicted dependent variable C% were also fuzzy sets. A
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regression model under our PBPK modeling framework was
represented as:

( )kkC t ( ),k pf t K= , k = 1,2,…n, ð1Þ

where f denoted the well-stirred single tissue-based model
and n was the number of measurement time points (indexed
by k). To conduct FLS regression, we implemented a
generalized version of a published algorithm (20) that used
least squares of errors between the observations and the
estimations in the possibilistic space as a fitting criterion for
parameter estimation (Seng et al., in preparation). In order to
develop the model in Eq. 1, we adopted the following two-
stage approach. First, we constructed a Fcost_ function G

based on a difference measure ( ),
k k k

D C C between eCCk and
kC

for the kth observation (21). Formally,

( ( ) ( ) ( )
1

2

0

, ,   ,k k k k k kD C C w d C C d
α

α αα

α α
=

=

⎧ ⎫⎡ ⎤= •⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∫ ð2Þ

where a Z [0, 1], w2(a) is a monotone increasing function in

[0, 1] and ( ) ( ),k k kd C C
α α

⎡ ⎤
⎢ ⎥⎣ ⎦

= ( ) ( ) ( ) ( )
2 2L UL U

k k k kC C C Cα αα α
⎡ ⎤ ⎡ ⎤− + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

,

with eCCk

� �

�
¼ Ckð ÞL� ; Ckð ÞU�
h i

and ( ) ( ) ( ),
L U

k k kC C C
α αα

⎡ ⎤= ⎢ ⎥⎣ ⎦
.

Here, Ckð ÞL� ; Ckð ÞU�
h i

and ( ) ),
L U

k kC C
α α

⎡ ⎤
⎢ ⎥⎣ ⎦

contain the lower

L and upper U bounds of the a-cuts of eCCk and
kC

respectively. w2(a) can be interpreted as the weight of

( ) ( ),k k kd C C
α α

⎡ ⎤
⎢ ⎥⎣ ⎦

, ensuring that the larger the membership

of the a-cut, the more significant it would be in determining

the difference between eCCk and
kC . In this study, we chose

w2(a) to be equal to the a level. Dk in Eq. 2 thus quantifies
the Euclidean difference between eCCk and

kC as a weighted
mean of the squared distances between their corresponding
a-cuts. Next, we computed G as an arithmetic mean of the
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In step two, we obtained the optimal estimates for rat eKKp , in
the sense of best fit to the observed data, by solving a
constrained nonlinear programming problem with an
objective function minimizing G .

Data

Data that were used to illustrate the utility of our fuzzy
PBPK modeling framework in predicting diazepam pharma-
cokinetics in human came from several sources.

Diazepam Disposition Data in Rats

We obtained the in vivo tissue distribution data for
estimating rat eKKp_s from a study of intravenous dosing of
diazepam in rats (22). In that study, diazepam concentrations
in the rat liver (LI), kidneys (KI), brain (BR), intestine
(SPL), stomach (ST), muscle from the hind limb (MU),
adipose tissue (AD), hair-free skin (SK), testes (TE), heart
(HT) and lungs (LU) were measured at 7, 10, 20, 35, 95 and
245 min, following a 1 mg intravenous infusion of the drug

over 5 min. Four or less measurements were obtained per t
instance. Additionally, four to ten arterial diazepam concen-
trations were also measured per t instance at 2, 5, 7, 10, 20,
35, 95 and 245 min.

Diazepam Disposition Data in Humans

To verify the prediction from our human diazepam
PBPK model, we obtained an independent set of human in

vivo distribution data from the literature (23). This consisted
of seven instances of plasma concentration-time data (where
an instance corresponded to a single plasma concentration-
time profile sampled at 5, 8, 11, 15, 20, 30, 45 and 60 min) for
diazepam dosed intravenously in human subjects (weight,
84 T 17 kg). The diazepam dose was 5 mg, intravenously
administered over 1 min.

Structure of PBPK Models in Rat and Human

The concept and methodology of PBPK modeling are
presented elsewhere (19). In this study, the structures of the
rat and human diazepam PBPK models were identical to that
used by Gueorguieva et al. (10). Briefly, the PBPK model
comprised compartments representing the aforementioned
tissues, interconnected by two compartments representing
the arterial (ART) and mixed venous (VEN) pools. To
preserve mass balance, a rest of the body (RE) compartment
was also incorporated. For both the rat and human PBPK
models, diazepam was administered by constant-rate infusion
into VEN. The LI compartment received diazepam directly
from the hepatic artery as well as from SPL and ST via the
hepatic portal vein. The LU compartment closed the
circulation loop and received blood at a flow rate equal to
the cardiac output. Elimination was accounted for by
metabolism in LI (15,24,25). Additionally, we assumed each
tissue to be characterized by perfusion-rate limited distribu-
tion, i.e., it was modeled using a single, well-stirred compart-
ment. The reader is referred to (10) for the compartmental
mass balance equations of the 14 compartments.

Fuzzy PBPK Modeling Strategy

The procedure for our fuzzy PBPK modeling framework
is depicted in Fig. 1. In the context of diazepam disposition
following intravenous administration, it consisted broadly of
two major steps, namely application of fuzzy set-based
estimation tools to first derive parameters characterizing
the key distribution and metabolism processes, and then
their combination in a PBPK model to predict, in a second
step, the in vivo distribution. It may be worth mentioning
here that, unlike in (10), we estimated the rat eKKp_s by FLS
regression.

Fuzzy Set-Based Estimation (I): Rat eKKp_s and eKKpu_s

Using FLS regression, we first estimated rat eCCk _s for
tissues that received diazepam only from the arterial blood
(i.e., MU, AD, TE, SK, HT, BR, KI, ST and SPL). To this
end, we fitted the well-stirred parametric model representa-
tion to the eCCk data for each of these tissues separately, using
an a priori fitted arterial concentration profile as the forcing
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Fig. 1. Procedure of PBPK modeling framework for fuzzy set-based estimation and prediction of diazepam pharmacokinetics in human.

Nonfuzzy data and/or parameters obtained from the literature are encapsulated by ellipses. Gray rectangles signify that estimation and/or

prediction using fuzzy arithmetic are performed.
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function, a procedure commonly termed the Fopen loop_
estimation approach (17). The forcing function was the best
fitting multi-compartmental pharmacokinetic model of the
rat plasma diazepam distribution data; model fitting was
performed using the Nonlinear Mixed Effects Modeling
(NONMEM) software (version V; NONMEM Project
Group, University of California, San Francisco, San Fran-
cisco, CA). Before implementing FLS regression, we also
fuzzified the concentration data for each t with an asymmet-
rical triangular membership function [following procedures
in (21)], since the tissue concentration values per t were
derived from no more than four rats and displayed large
variability. More concretely, for the kth observation, the
bounds of the support of eCCk were assigned the minimum and
maximum concentration values, while the Fmost likely_ value
(i.e., the concentration at which a = 1) of eCCk was set equal to
the median of the measured concentrations. We selected the
median as a measure of the fuzzy concentration_s Fmost
likely_ value so that it would not be Fdistorted_ by outliers in
the small sample of measurements. We assumed that t was
recorded with little imprecision and it therefore remained
nonfuzzy. Since our data comprised asymmetrical triangular
fuzzy sets and each regression model contained only one
regression coefficient, the estimated rat MU, AD, TE, SK,
HT, BR, KI, ST and SPL eKKp_s had an asymmetrical triangular
membership function shape. For the purpose of estimating
the rat eKKp_s, we assumed the tissue volumes and blood flow
rates to be that for a 250 g rat (10; Table I). We assigned
constants to these parameters because they were typically
well-characterized in the literature and, hence, were less

imprecise or uncertain compared to rat Kp_s. Furthermore,
doing so would facilitate comparison of the fuzzy diazepam
concentrations in rat tissues predicted in this study and in
(10), since the authors in (10) also assigned constants to the
rat tissue volumes and blood flow rates.

Prior to identifying rat LI eKKp by the Fopen loop_ method,
we derived rat hepatic in vivo intrinsic clearance (CLint, in vivo)
via the well-stirred liver model (26) and using values of rat
plasma unbound fraction of diazepam (fu), blood-to-plasma
concentration ratio of diazepam (R), liver blood flow rate (11)
and hepatic blood CL, with the latter derived from dividing
the administered diazepam dose by the area under the
previously fitted plasma concentration-time curve. Here, using
the finding that extrahepatic metabolism of diazepam in rat is
negligible (15,24,25), we assumed that the values for the total
blood CL and the hepatic blood CL were identical. Addition-
ally, we defuzzified rat ST and SPL eKKp_s into their nonfuzzy
counterparts prior to FLS regression of the LI parametric
model. This was achieved using the centroid method (27):

K*
p ¼

R

Kp � � Kp

� �

dKp
R

� Kp

� �

dKp

ð3Þ

where K*
p denotes the defuzzified value of eKKp . Since we

utilized the Fopen loop_ approach for estimating rat eKKp_s in
this paper, we could not estimate rat tissue-to-plasma
concentration ratios for LU and RE as fuzzy sets. Instead,
we obtained nonfuzzy rat LU and RE Kp_s from (22), which
also computed Kp_s by the Fopen loop_ method with the same
set of rat in vivo tissue distribution data.

To obtain appropriate tissue-to-plasma concentration
ratios for the human diazepam PBPK model, we used the
assumption that the ratio of tissue concentration to unbound
plasma concentration of diazepam (Kpu) obtained in rat
could be utilized to predict its disposition kinetics in human
(15,28). That assumption was predicated on the finding that
the steady-state volumes of unbound diazepam in rat and
human were equivalent, which indicated that any difference
in total diazepam pharmacokinetics was primarily due to the
difference in serum protein binding of diazepam between rat
and human (24). The approach of scaling rat Kp to Kpu to
quantify diazepam pharmacokinetics in human had been
previously shown to elicit accurate prediction of its disposi-
tion kinetics in a PBPK model (15). Accordingly, we divided
all rat Kp_s by rat fu to yield Kpu_s. Furthermore, to capture
the potential vagueness inherent in this scaling, we repre-
sented rat fu as a symmetrical triangular fuzzy set with half-
support equal to 0.05� fu, i.e., effu ¼ fu � 0:05�h fu; fu; fu þ
0:05� f i according to the triplet notation of Hanss (29). As
a consequence, all rat Kpu_s were represented as fuzzy sets in
this paper.

Fuzzy Set-Based Estimation (II): Human Hepatic gCLCLint; in vivo

We constructed the human hepatic gCLCLint; in vivo based on
CLint, in vivo values reported by Naritomi et al. (30). In that
study, primary cultures of cryopreserved human hepatocytes
were used to estimate the hepatic intrinsic CL measured in

vitro (expressed in ml/min/cell) based on diazepam disap-
pearance. CLint, in vivo, expressed in ml/min/kg, was then
calculated from CLint, in vitro by direct scaling up using the

Table I. Physiological Parameter Values for PBPK Modeling in a

250 g Rat and a 70 kg Human

Compartment
Volume (ml)

Blood Flow

Rate (ml/min)

Rata Humanb Rata Humanb

LU 1.2 504 80 4,951.8

LI 11 1,799 3.55 301

ST 1.1 140 1.9 39.2

SPL 15 966 20.25 1,099

KI 2 294 16.61 1,099

MU 125 30,786 16.25 749

AD 10 13,601 2.55 259

SK 43.8 7,126 7.1 301

HT 1 322 4.2 149.8

BR 1.2 1,351 0.78 700

TE 2.5 28 1.9 2.8

RE 15.8 7,854 4.91 252

ART 6.8 2,037 80 4,951.8

VEN 13.6 3,192 80 4,951.8

Whole body 250 70,000 80 4,951.8

Mean unbound fraction

of diazepam in plasma fu

0.14c 0.032c

Mean blood-to-plasma

ratio of diazepam R

1.037c 1.037d

a Blood flow rates and tissue volumes for the rat were referenced

from (10).
b Blood flow rates and tissue volumes for the human were referenced

from (24,31–35).
c Referenced from (15).
d Mean for man was assumed to be equivalent to that for rat (15).
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factor CLint, in vivo/CLint, in vitro measured in rat. CLint, in vivo

in rat was obtained from in vivo pharmacokinetic data using
the well-stirred liver model, whereas CLint, in vitro in rat was
measured from freshly isolated rat hepatocytes. However, as
acknowledged by the authors, the human CLint, in vivo values
were characterized by imprecision since (1) limited (six) and
nonuniform (differing in age, race and sex) human cryopre-
served hepatocytes were used; (2) difficulties arose during the
measurement of low values of human and rat CLint, in vitro;
and (3) marked differences among the rat CLint, in vivo/CLint,

in vitro values existed. In order to capture the uncertainty
associated with the human CLint, in vivo values (209.4, 227.9,
338.8, 585.2, 893.2 and 1570.8 ml/min as scaled for a 70 kg
human), we used an asymmetrical triangular fuzzy set to
embody them. In particular, we assigned 209.4 and 1570.8 ml/
min as the minimum and maximum values, respectively, of
the support of gCLCLint;invivo . We assigned the Fmost likely_
value of eKKp as the median of the six CLint, in vivo values (i.e.,
462 ml/min).

Fuzzy Set-Based Prediction of Diazepam Disposition (I): Rat

First, we described the interval membership of rat eKKp _s
and rat hepatic gCLCLint; in vivo using 11 a-cuts each (a = 0,
0.1,...,1). We obtained the fuzzy rat hepatic gCLCLint; in vivo from
(10). The rat hepatic K*

p had an asymmetrical trapezoidal
membership function, with the support and Fmost likely_
interval equal to [200, 1,200] and [400, 800] ml/min respec-
tively. We simulated the PBPK model for a 250 g rat
receiving 1 mg of diazepam (intravenously administered over
5 min) over t = 0–245 min (in intervals of 1 min) using the a-
cut strategy outlined in FMaterials and Methods_. For this
purpose, as we mentioned, we used nonfuzzy 250 g-rat tissues
volumes and blood flow rates, as well as R and fu of diazepam
from (10 (Table I). We compared the predicted fuzzy-valued
diazepam concentrations against the tissue distribution data
in (22).

Fuzzy Set-Based Prediction of Diazepam

Disposition (II): Human

First, we expressed rat eKKpu _s and human hepatic
gCLCLint; in vivo as 11 a-cuts each (a = 0, 0.1,...,1). Again using
the a-cut strategy, we simulated the PBPK model for a 70 kg
human receiving 5 mg of diazepam (intravenously adminis-
tered over 1 min) over t = 1–60 min (in intervals of 1 min).
We obtained tissue blood flow rates from Bernareggi and
Rowland (31), and Williams and Leggett (32). We referenced
tissue volumes from a variety of reports (33–35). In addition,
we obtained R and fu of diazepam for human from (24).
Table I lists these nonfuzzy physiological and biochemical
parameters. We evaluated the accuracy of our predictions by
qualitatively comparing them with plasma concentration
values reported by Lindhardt et al. (23).

RESULTS

Fuzzy Set-Based Estimation

Our results showed that a two-compartment model
provided the best fit to the plasma data for diazepam in rat.

We estimated the values of the population parameters using
the first-order conditional estimation (with interaction
effects) method in NONMEM (Table II). We modeled the
between-subject and residual unknown variability according
to an exponential model and a proportional model respec-
tively. The relative standard errors of the fixed-effect mean
parameters were between 5.8 and 18.1%, which suggests that
these parameters were estimated with good precision.

The rat eKKp_s identified by FLS regression are presented
in Fig. 2. Our results indicated that the convergence
properties of the underlying nonlinear programming problem
in FLS regression were good: in most cases we obtained
optimized parameters with less than ten iterations. For
comparison purposes, we showed the corresponding mem-
bership functions obtained via the probability-possibility
transformation technique (10). To further facilitate compar-
ison, we also displayed the defuzzified, nonfuzzy rat Kp

values from this study and from (10). In Fig. 3, we compared
the membership functions of eCC _s and C ’s of selected rat
tissue compartments after their respective single tissue-based
models were identified by FLS regression. Visually, we
observed that more than half of the Fmost likely_ values of

C ’s were generally contained in the supports of the
corresponding eCC _s. These results suggest that the fuzzy
regression models were successful in establishing the respec-
tive functional relationships between t and eCC in the rat
tissues. In Table III, we list the a-cuts of the rat eKKpu _s at
a = 0.1, 0.5 and 1.

Fuzzy Set-Based Prediction of Diazepam Disposition in Rat

In Fig. 4, we plot the envelopes for C ’s in several rat
tissue compartments across the simulation time history at a-
cuts = 0.1 and 1. To this end, we profiled the minimum (i.e.,
lower bound of a-cut) and maximum (i.e., upper bound of a-
cut) concentration values over t = 0–245 min for an a level.
For comparison purposes, we also computed the fuzzy
concentrations at these a-cuts using the rat eKKp_s obtained
from (10). Overall, considering the differences in the
membership functions between the rat eKKp _s from our study
and from (10), we observed that simulated profiles were
morphologically similar. Additionally, we noted that our
predicted output envelopes of a Q 0.1 membership typically

Table II. Population Parameters of the Biexponential Pharmacoki-

netic Model, C ¼ Ae�at þ Be�bt

Parameter
Parameter Estimates Between-subject Variability

Valuea S.E.b BSVc S.E.b

A (ng/ml) 3,080 11.4 49.4 40.4

B (ng/ml) 175 18.1 57 35.7

a (1/min) 0.15 8.1 NE NE

b (1/min) 0.0128 5.8 NE NE

s2 0.0563 29

s2 , variance of the proportional residual unknown error model. NE

Not estimated.
a Fixed-effect parameters.
b Standard error expressed as percent coefficient of variation.
c BSV, between-subject variability expressed as percent coefficient of

variation.
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enveloped all the raw diazepam concentration data, further
supporting the reliability of FLS regression for parameter
estimation as well as verifying the fuzzy prediction step.

Fuzzy Set-Based Prediction of Diazepam Disposition
in Human

We plot the envelopes for C ’s in the human LU, LI,
HT, BR, AD and ART compartments from t = 1 min to t = 60
min at a-cuts = 0.1, 0.5 and 1 in Fig. 5. We also display the
measured mean (TSD) concentrations in human plasma (23).
We noted that the mean in vivo data for all measured t

instances were typically contained in the simulated concen-
tration-time envelopes.

DISCUSSION

In this study, we have developed a computational
framework using fuzzy arithmetic and FLS regression to
systematically account for vague human judgment for uncer-
tainty analysis in PBPK models. While we do not propose
replacing probabilistic PBPK models for uncertainty analysis,
when they are applicable, we illustrate, through our results,
the utility and potential contribution of applying fuzzy set
descriptions of dramatically sparse data—not uncommon
during early drug discovery—in PBPK models. In particular,

we suggest an alternative approach to the way such data were
used to estimate rat eKKp _s in (10) by conducting FLS re-
gression analysis. In doing so, we permit a fuzzy set theoretic
treatment of the imprecise concepts associated with human
perception and comprehension of minimal data, spanning
model identification through prospective simulation.

Fuzzy Set-Based Estimation

A key difference between the work presented in this
study and in (10) was in our implementation of FLS
regression analysis to estimate the rat eKKp_s. For the sake of
completeness, we compared eKKp_s obtained from FLS regres-
sion and their counterparts determined via the probability-
possibility transformation technique (10). In the absence of
Fstandard_ rat tissue eKKp_s (due to the myriad ways with which
the tissue distribution data could be analyzed, e.g., data
assumed to follow a Gaussian distribution; data represented
as fuzzy sets; and so on)—by which one could conduct an
objective evaluation of the performances of the probability–
possibility transformation technique and FLS regression—we
have resorted to a qualitative comparison of the rat eKKp_s,
following the procedures of (21,36,37). Our results showed
that the supports of many fuzzy parameters estimated by FLS
regression exhibited variability of comparable magnitude
with respect to those transformed from the respective PDF_s,
differing by 23% on average. Furthermore, the defuzzified rat
Kp values of the cross-referenced membership functions com-
pared favorably (differences were less than 25%), leading to
substantial overlaps between the membership functions, with
the exception of the ST and LI eKKp _s. However, we recognize
that this discrepancy could be minimized, e.g., by performing
FLS regression analysis with the initial guesses for the ST eKKp _s
and LI eKKp _s Fmost likely_ values set equal to, respectively, the
centers of the Fmost likely_ intervals of the ST eKKp and LI eKKp

identified in (10). All these considerations suggest that the
estimation results of FLS regression were numerically close
to that obtained in (10).

These findings notwithstanding, the fuzzy set theoretic
approach appears to be an improvement over the probability-
possibility transformation technique (10) for handling vague
or subjective descriptors. As mentioned previously in
BIntroduction^, the latter method requires the data modeler
to first estimate the rat Kp_s probability distributions by
statistical regression. However, the scarcity, and by exten-
sion, vagueness of rat tissue diazepam concentration data
might render statistical regression methods inapplicable,
since these approaches assume that the uncertainty in the
underlying data must be explained by statistical randomness.
Furthermore, the transformation of a PDF to its fuzzy set
counterpart is inherently subjective—and thus, we argue, it
defeats the purpose of statistical regression analysis for
quantifying data randomness in the first place—and may also
be unsuccessful if the PDF is characterized by a high variance
value (10). In contrast, fuzzy regression analysis is designed
for constructing the relationship between explanatory and
response variables with fuzzy, not random, data, which arise
from human perception and judgment. Under FLS regres-
sion, the lower and upper bounds of the estimated rat eKKp_s
support definitively characterize the vagueness in the under-
lying data. The same, however, cannot be said of the support

Fig. 2. Comparison of rat eKKp _s identified from FLS regression anal-

ysis (continuous line) and eKKp _s obtained using the probability-

possibility transformation method (dash line) (8). Each defuzzified

rat Kp value from FLS regression analysis (continuous line) and the

probability-possibility transformation method (dash line) is depicted

as a singleton, i.e., the nonfuzzy value has a membership of 1.
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of rat eKKp transformed from its PDF counterpart, since the
probability distribution characterizes statistical variability,
not vagueness, in the data. In conclusion, fuzzy regression
serves as an intuitive tool for robust estimations in situations

where the availability of minimal data is characterized by
vagueness, a finding consistent with the literature (38–40).

A hallmark of the fuzzy set theoretic approach lies in its
representation of the subjective preferences of the data
modeler via the use of mathematical constructs such as
membership functions. Although this permits fuzzy sets to be
more flexible than probability assignments in handling
human thinking and judgment, it is only logical to expect
that different data modelers will characterize data vagueness
differently, with different membership function shapes, and
that these variations will likely affect the output fuzzy sets. In
this study, we have fuzzified the diazepam concentrations and
the human in vitro metabolism data with a triangular
membership function because: (1) fuzzy sets with a triangular
membership function are most often used in the literature;
(2) it seemed natural to assign the median of the diazepam
concentration values as its Fmost likely_ value and the
minimum and maximum values as its maximum range of
uncertainty; and (3) we have intentionally kept all member-
ship functions simple, so that the computational procedure of
our modeling framework could be made clear. Quite
possibly, a different group of data modelers analyzing the

Fig. 3. Comparison between the membership functions of diazepam eCC _s (continuous line) and their corresponding C ’s (dot line) based on

the fuzzy regression model and estimated rat eKKp _s in the MU, SPL, SK and LI compartments. FConc_ denotes concentration.

Table III. a-cuts of Rat eKKpu _s at a = 0.1, 0.5 and 1

Parameter a-cut at a = 0.1 a-cut at a = 0.5 a-cut at a = 1

LU Kpu [50.1, 55.3] [51.3, 53.9] [52.6, 52.6]

LI Kpu [159.1, 222.3] [173.3, 204.9] [187.5, 187.5]

ST Kpu [29.9, 31.6] [30.1, 30.9] [30.4, 30.4]

SPL Kpu [26.1, 31.7] [27.1, 29.9] [28.1, 28.1]

KI Kpu [29.8, 43.2] [33.7, 40.4] [37.6, 37.6]

MU Kpu [7.7, 19.2] [9.8, 15.5] [11.8, 11.8]

AD Kpu [90.1, 584.8] [192, 439.3] [293.9, 293.9]

SK Kpu [17.5, 49.3] [21.8, 37.7] [26.1, 26.1]

HT Kpu [38.7, 67.5] [40.4, 54.8] [42.2, 42.2]

BR Kpu [12.3, 19.2] [14.2, 17.6] [16.1, 16.1]

TE Kpu [49.4, 53.3] [50.3, 52.2] [51.1, 51.1]

RE Kpu [102.5, 113.3] [105, 110.4] [107.6, 107.6]

The two numbers in each interval denote the minimum and maxi-

mum Kpu_s per a-cut.
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same data set might have considered an interval of concen-
tration values to be equally Fmost likely_ at every t instance,
and characterized the diazepam concentrations as trapezoidal
fuzzy sets. Hence, it would be informative to assess the
impact of different input membership function preferences
on rat eKKp _s, and by extension, the predicted fuzzy con-
centration in human tissues in a study involving sensitivity
analysis. In this regard, we expect that changing the shape of
all input membership functions from triangular to, for
example, trapezoidal, will alter the shape of the membership
functions of rat eKKp _s and of the diazepam concentrations in
human. However, assuming that the supports of the revised
input membership functions are still bounded by the mini-
mum and maximum measurements, we anticipate the spreads
of these predicted fuzzy sets to be comparable to those
obtained from the present study.

The computational complexity of our FLS regression
algorithm depends on the number of iterations required to
obtain the optimal fuzzy coefficients as well as the compu-
tational complexity of a single iteration, which is dependent
on the numerical complexity of the underlying model (e.g.,
number of equations, number of model parameters). Due to
its computational and analytical simplicity, we have chosen to
use the Fopen loop_ estimation method to illustrate the
framework of FLS regression analysis in this study, as
opposed to the Fclose loop_ estimation approach by which

all equations of the PBPK model are fitted simultaneously to
the data. However, the Fopen loop_ estimation method does
not account for the interdependence between the tissues in
regard to the mass balance of diazepam in rat, therefore
yielding potentially biased eKKp_s and concentration predictions
(19,22). It may thus be desirable to fit all tissue distribution
data simultaneously to estimate rat eKKp_s via the Fclose loop_
method. Since this estimation approach is numerically more
complex than the Fopen loop_ method, enhanced computa-
tional resources as well as improved optimization tools may
be needed to solve the mathematical programming problem
we formulated using least-squares fitting.

Fuzzy Set-Based Prediction

Despite differences between the shapes of the member-
ship functions of rat eKKp_s estimated via FLS regression and
the probability-possibility transformation technique (10), the
fuzzy diazepam concentrations in various rat tissues were
numerically close, in the sense that the corresponding
envelopes_ profiles at various a-cuts were almost identical.
Such similarity can be traced to these reasons: (1) the
defuzzified Kp values were only slightly different; (2) on the
average, the supports of rat eKKp_s did not differ appreciably;
and (3) apart from the differences between rat eKKp_s, we and
the authors of (10) used the same PBPK model structure for
prediction. More importantly, we observed that the predicted

Fig. 4. Fuzzy diazepam C (ng/ml) versus t (min) in rat plasma and

tissue compartments, as predicted using rat eKKp_s estimated by FLS

regression and by the probability–possibility (P–P) transformation

technique in (10). The predicted minimum and maximum profiles are

shown at a-cuts of 0.1 and 1. The measured nonfuzzy concentrations

(22) are shown in open circles for comparison purposes.

Fig. 5. Fuzzy-valued diazepam C (ng/ml) versus t (min) in human

plasma and tissue compartments. The predicted minimum and

maximum profiles are shown at a-cuts of 0.1, 0.5 and 1. The

measured mean (TSD) concentrations (shown as error bars) (23) for

the arterial compartment are also shown for comparison purposes.
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contours of a Q 0.1 membership in our rat PBPK model
typically enveloped the data, further indicating the reliability
of FLS regression for parameter estimation. While not
providing independent, rigorous validation of the human
PBPK model_s predictions following intravenous administra-
tion of diazepam, the comparison of the concentration-time
envelopes with previously published mean in vivo data is
rather encouraging.

It must be stressed, however, that prediction based on
fuzzy set theory is more suitable for qualitative reasoning
than quantitative estimation of uncertainty. As mentioned
previously, this is because varying degrees of human subjec-
tivity are inevitably incorporated when insufficient, imprecise
or vague information is enshrined in the form of fuzzy sets
and membership functions. Consequently, the predicted
diazepam concentration a-cuts may differ in areas like the
Fmost likely_ values and the maximum variability at the
lowest level of certainty, i.e., at the a-cut equal to zero.
Therefore, the superposition of the predicted fuzzy envelopes
and the measured data in this study only served as evidences
of the robustness of the computational framework, as well as
the suitability of the model structure (and parameters), and
not as definitive proof of model validation. Nonetheless, it
appears that fuzzy PBPK model prediction based on fuzzy
parameters can describe variability in model parameters on
the basis of a limited number of values from experiments
and/or human opinion. As such, it can (1) improve the typical
value approach of simulating single curves or variables by
including a measure of variability and uncertainty in the
parameters; and (2) provide a formal framework for the rep-
resentation of uncertainty in risk assessment when the limited
data at hand cannot justify the assumptions underlying the
use of probability distributions for statistical techniques, e.g.,
Monte Carlo simulation.

The major advantage of PBPK models is the opportunity
to quantify concentrations and amounts in physiological
compartments remote from the site of administration and
sampling. The predictions of diazepam concentrations in such
remote tissues (e.g. heart and kidneys) are conditional on the
model structure and the (fuzzy) parameter values. Our
results show that, following intravenous administration, most
peripheral compartment concentrations reach their peaks at
around 10 minutes after injection; the peaks are then
followed by a steady decrease. Small numerical instabilities
at large times and low concentrations (which can be
especially appreciated in Fig. 5 in the lung compartment
predictions) are mostly due to the large uncertainty in the
eKKp_s estimated in the rat. The impossibility to independently
validate the predicted remote site time courses against direct
measurements is a clear limitation of these predictions, and
in fact it can be argued that most PBPK modeling studies in
vivo suffer from similar problems. However, we feel these
results are promising, especially in light of published reports
suggesting successful use of PBPK methods in scaling of drug
disposition from rat to human (15,41) .

CONCLUSIONS

We present a novel and powerful computational frame-
work to predict, via fuzzy set theoretic approaches, intrave-
nous pharmacokinetic profiles in rat and in human based on

limited rat in vivo tissue distribution and human in vitro
metabolic data. A significant feature of our framework is the
implementation of FLS regression analysis to estimate rat eKKp_s
in the presence of uncertainty in data that arises as a con-
sequence of the vagueness attached to human judgment.
Further development of the fuzzy PBPK modeling framework,
e.g., through estimation of eKKp_s via a Fclosed loop_ model, will
serve to further enhance its modeling capability.
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